Preview

Научно-практическая ревматология

Расширенный поиск

Эффективность и безопасность тофацитиниба при иммуновоспалительных ревматических заболеваниях (часть II)

https://doi.org/10.14412/1995-4484-2020-214-224

Полный текст:

Аннотация

Разработка «таргетных» пероральных противовоспалительных лекарственных препаратов – ингибиторов Янускиназ (Janus kinase, JAK), первым представителем которых является тофацитиниб (ТОФА), рассматривается как крупное достижение биологии и медицины начала XXI в. В части I обзора были рассмотрены материалы исследований, касающихся эффективности и безопасности ТОФА при ревматоидном артрите (РА). Расширение представлений о механизмах развития и хронизации воспаления, противовоспалительных и иммуномодулирующих эффектах ТОФА на модели РА создало теоретические и клинические предпосылки для изучения эффективности ТОФА при других иммуновоспалительных ревматических заболеваниях (ИВРЗ) и хронических воспалительных «неревматических» болезнях. В части II обзора обобщены новые данные, позволяющие сформировать основные направления дальнейших клинических и фундаментальных исследований, цель которых – расширение показаний и персонификация терапии ингибиторами JAK у пациентов с ИВРЗ.

Об авторах

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГБОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

научный руководитель, академик РАН, профессор, докт. мед. наук

115522, Москва, Каширское шоссе, 34А

119991, Москва, ул. Трубецкая, 8, стр. 2 



А. С. Авдеева
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

научный сотрудник лаборатории стандартизации терапии ревматических заболеваний, канд. мед. наук

115522, Москва, Каширское шоссе, 34А

 



А. М. Лила
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

директор, профессор, докт. мед. наук

115522, Москва, Каширское шоссе, 34А

125993, Москва, ул. Баррикадная, 2/1, стр.1

 



Список литературы

1. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201

2. Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно- практическая ревматология. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-1

3. Насонов ЕЛ, Авдеева АС, Лила АМ. Эффективность и безопасность тофацитиниба при иммуновоспалительных ревматических заболеваниях (часть I). Научно-практическая ревматология. 2020;58(1):62-79. doi: 10.14412/1995-4484-2020-62-79

4. Jamilloux Y, El Jammal T, Vuitton L, et al. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019 Sep 11:102390. doi: 10.1016/j.autrev.2019.10

5. Virtanen A, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases. BioDrugs. 2019;33(1):15-32. doi: 10.1007/s40259-019-00333-w

6. El Jammal T, Gerfaud-Valentin M, Seve P, Jamilloux Y. Inhibition of JAK/STAT signaling in rheumatologic disorders: The expanding spectrum. Joint Bone Spine. 2019 Sep 12. doi: 10.1016/j.jbspin.2019.09.005

7. Olivieri I. Psoriasis, psoriatic arthritis, or psoriatic disease? J Rheumatol. 2006;33(2):210-2.

8. Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Engl J Med. 2017;376:957-70. doi: 10.1056/NEJMra1505557

9. Chimenti MS, Caso F, Alivernini S, et al. Amplifying the concept of psoriatic arthritis: The role of autoimmunity in systemic psoriatic disease. Autoimmun Rev. 2019;18(6):565-75. doi: 10.1016/j.autrev.2018.11.007

10. Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. Lancet. 2018 2;391(10136):2273-84. doi: 10.1016/S0140-6736(18)30830-4

11. Bravo A, Kavanaugh A. Bedside to bench: defining the immunopathogenesis of psoriatic arthritis. Nat Rev Rheumatol. 2019;15(11):645-56. doi: 10.1038/s41584-019-0285-8

12. Лила АМ, Насонов ЕЛ, Коротаева ТВ. Псориатический артрит: патогенетические особенности и инновационные методы терапии. Научно-практическая ревматология. 2018;56(6):685-91. doi: 10.14412/1995-4484-2018-685-691

13. Silvagni E, Bortoluzzi A, Ciancio G, Govoni M. Biological and synthetic target DMARDs in psoriatic arthritis. Pharmacol Res. 2019;149:104473. doi: 10.1016/j.phrs.2019.104473

14. Talotta R, Atzeni F, Sarzi-Puttini P, Masala IF. Psoriatic arthritis: From pathogenesis to pharmacologic management. Pharmacol Res. 2019;148:104394. doi: 10.1016/j.phrs.2019.104394

15. Chan J, Gladman D. Oral treatment options for AS and PsA: DMARDs and small-molecule inhibitors. Best Pract Res Clin Rheumatol. 2018;32(3):415-26. doi: 10.1016/j.berh.2018.08.0

16. Насонов ЕЛ. Новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний: фокус на ингибиторы интерлейкина 17. Научно-практическая ревматология. 2017;55(1):68-86. doi: 10.14412/1995-4484-2017-68-86

17. Насонов ЕЛ, Коротаева ТВ, Дубинина ТВ, Лила АМ. Ингибиторы ИЛ23/ИЛ17 при иммуновоспалительных ревматических заболеваниях: новые горизонты. Научно-практическая ревматология. 2019;57(4):400-6. doi: 10.14412/1995-4484-2019-400-406

18. Корсакова ЮЛ, Коротаева ТВ. Современная фармакотерапия псориатического артрита. Научно-практическая ревматология. 2019;57(1):75-82. doi: 10.14412/1995-4484-2019-75-82

19. Paik J, Deeks ED. Tofacitinib: A review in psoriatic arthritis. Drugs. 2019;79(6):655-63. doi: 10.1007/s40265-019-01091-3

20. Ly K, Beck KM, Smith MP, et al. Tofacitinib in the management of active psoriatic arthritis: patient selection and perspectives. Psoriasis (Auckl). 2019;9:97-107. doi: 10.2147/PTT.S161453

21. Singh JA, Guyatt G, Ogdie A, et al. Special Article: 2018 American College of Rheumatology/National Psoriasis Foundation Guideline for the Treatment of Psoriatic Arthritis. Arthritis Care Res (Hoboken). 2019;71(1):2-29. doi: 10.1002/acr.23789

22. Mease P, Hall S, FitzGerald O, et al. Tofacitinib or Adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377(16):1537-50. doi: 10.1056/NEJMoa1615975

23. Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377(16):1525-36. doi: 10.1056/NEJMoa1615977

24. Strand V, de Vlam K, Covarrubias-Cobos JA, et al. Tofacitinib or adalimumab versus placebo: patient-reported outcomes from OPAL Broaden – a phase III study of active psoriatic arthritis in patients with an inadequate response to conventional synthetic disease-modifying antirheumatic drugs. RMD Open. 2019;5(1):e000806. doi: 10.1136/rmdopen-2018-000

25. Van der Heijde D, Gladman DD, FitzGerald O, et al. Radiographic progression according to baseline C-reactive protein levels and other risk factors in psoriatic arthritis patients treated with tofacitinib or adalimumab. J Rheumatol. 2019. doi:10.3899/jrheum.180971

26. Nash P, Greenwald M, Lin L, et al. The impact of time since first diagnosis on the efficacy and safety of tofacitinib in patients with active psoriatic arthritis [abstract]. Arthritis Rheum. 2019;71 Suppl 10. Available at: https://acrabstracts.org/abstract/the-impact-oftime-since-first-diagnosis-on-the-efficacy-and-safety-of-tofacitinib-in-patients-with-active-psoriatic-arthritis/

27. Strand V, de Vlam K, Covarrubias-Cobos JA, et al. Effect of tofacitinib on patient-reported outcomes in patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors in the phase III, randomised controlled trial: OPAL Beyond. RMD Open. 2019;5(1):e000808. doi: 10.1136/rmdopen-2018-000808

28. Helliwell P, Coates LC, FitzGerald O, et al. Disease-specific composite measures for psoriatic arthritis are highly responsive to a Janus kinase inhibitor treatment that targets multiple domains of disease. Arthritis Res Ther. 2018;20(1):242. doi: 10.1186/s13075-018-1739-0

29. Nash P, Coates LC, Fleischmann R, et al. Efficacy of Tofacitinib for the treatment of psoriatic arthritis: pooled analysis of two phase 3 studies. Rheumatol Ther. 2018;5(2):567-82. doi: 10.1007/s40744-018-0131

30. Nash PCL, Kivitz AJ, Mease PJ, et al. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, up to 36 months in patients with active psoriatic arthritis: data from the second interim analysis of OPAL balance, an open-label, long-term extension study [abstract]. Arthritis Rheum. 2017. Available at: https://acrabstracts.org/abstract/safety-and-efficacy-of-tofacitinib-an-oraljanus-kinase-inhibitor-up-to-36-months-in-patients-with-activepsoriatic-arthritis-data-from-the-second-interim-analysis-ofopal-balance-an-openвАС/

31. Nash P, Coates L, Mease P, et al. Tofacitinib as Monotherapy Following Methotrexate Withdrawal in Patients with Psoriatic Arthritis Previously Treated with Open-label Tofacitinib + Methotrexate: A Randomized, Placebo-controlled Sub-study of OPAL Balance [abstract]. Arthritis Rheum. 2019;71 Suppl 10. Available at: https://acrabstracts.org/abstract/tofacitinib-asmonotherapy-following-methotrexate-withdrawal-in-patientswith-psoriatic-arthritis-previously-treated-with-open-label-tofacitinib-methotrexate-a-randomized-placebo-controlled-sub-st/

32. Taurog JD, Chhabra A, Colbert RA. Ankylosing spondylitis and axial spondyloarthritis. New Engl J Med. 2016;374:2563-74. doi: 10.1056/NEJMral406182

33. Sieper J, Poddubnyy D, Miossec P. The IL-23-IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat Rev Rheumatol. 2019 Sep 24. doi: 10.1038/s41584-019-0294-7

34. McGonagle DG, McInnes IB, Kirkham BW, et al. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies. Ann Rheum Dis. 2019 Sep;78(9):1167-78. doi: 10.1136/annrheumdis-2019-215356

35. Veale DJ, McGonagle D, McInnes IB, et al. The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis. Rheumatology (Oxford). 2019;58(2):197-205. doi: 10.1093/rheumatology/key070

36. Van der Heijde D, Deodhar A, Wei JC, et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis. 2017;76:1340-7. doi: 10.1136/annrheumdis-2016-210322

37. Maksymowych WP, Heijde DV, Baraliakos X, et al. Tofacitinib is associated with attainment of the minimally important reduction in axial magnetic resonance imaging inflammation in ankylosing spondylitis patients. Rheumatology (Oxford). 2018;57(8):1390-9. doi: 10.1093/rheumatology/key104

38. Van der Heijde D, Song IH, Pangan AL, et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): A multicentre, randomised, double-blind, placebo-controlled, phase 2/3 trial. Lancet. 2019;394(10214):2108-17. doi: 10.1016/S0140-6736(19)32534-6

39. Kerrigan SA, McInnes IB. JAK inhibitors in rheumatology: implications for paediatric syndromes? Curr Rheumatol Rep. 2018;20(12):83. doi: 10.1007/s11926-018-0792-7

40. Ruperto N, Brunner HI, Zuber Z, et al. Pediatric Rheumatology International Trials Organization (PRINTO); Pediatric Rheumatology Collaborative Study Group (PRCSG). Pharmacokinetic and safety profile of tofacitinib in children with polyarticular course juvenile idiopathic arthritis: results of a phase 1, open-label, multicenter study. Pediatr Rheumatol Online J. 2017 Dec 28;15(1):86. doi: 10.1186/s12969-017-0212-y

41. Collinge M, Ball DJ, Bowman CJ, et al. Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats – Comparison of juvenile and adult responses. Regul Toxicol Pharmacol. 2018;94:306-22. doi: 10.1016/j.yrtph.2018.02.006

42. Brunner H, Synoverska O, Ting T, et al. Tofacitinib for the treatment of polyarticular course juvenile idiopathic arthritis: results of a phase 3 randomized, double-blind, placebo-controlled withdrawal study [abstract]. Arthritis Rheum. 2019;71(suppl 10). Available at: https://acrabstracts.org/abstract/tofacitinib-for-the-treatmentof-polyarticular-course-juvenile-idiopathic-arthritis-results-ofa-phase-3-randomized-double-blind-placebo-controlled-withdrawal-study/ (accessed February 17, 2020).

43. Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-61. doi: 10.14412/1995-4484-2019-452-461

44. Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford). 2017;56(10):1662-75. doi: 10.1093/rheumatology/kew431

45. Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039. doi: 10.1038/nrdp.2016.39

46. Catalina MD, Owen KA, Labonte AC, et al. The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun. 2019 Dec 2:102359. doi: 10.1016/j.jaut.2019.102359

47. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716-30. doi: 10.1038/nrrheum.2016.186

48. Song K, Liu L, Zhang X, Chen X. An update on genetic susceptibility in lupus nephritis. Clin Immunol. 2019;210:108272. doi: 10.1016/j.clim.2019.108272

49. Larosa M, Zen M, Gatto M, et al. IL-12 and IL-23/Th17 axis in systemic lupus erythematosus. Exp Biol Med (Maywood). 2019;244(1):42-51. doi: 10.1177/1535370218824547

50. Alunno A, Padjen I, Fanouriakis A, Boumpas DT. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: Integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. Cells. 2019;8(8). doi: 10.3390/cells8080898

51. Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs. 2019;28(1):85-92. doi: 10.1080/13543784.2019.1

52. Ripoll E, de Ramon L, Draibe Bordignon J, et al. JAK3-STAT pathway blocking benefits in experimental lupus nephritis. Arthritis Res Ther. 2016;18:134. doi: 10.1186/s13075-016-1034-x

53. Ikeda K, Hayakawa K, Fujishiro M, et al. JAK inhibitor has the amelioration effect in lupus-prone mice: The involvement of IFN signature gene downregulation. BMC Immunol. 2017;18:41. doi: 10.1186/s12865-017-0225-9

54. Furumoto Y, Smith CK, Blanco L, et al. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction. Arthritis Rheum. 2017;69:148-60. doi: 10.1002/art.39818

55. Rodero MP, Fremond M-L, Rice GI, et al. JAK inhibition in STING-associated interferonopathy. Ann Rheum Dis. 2016;75(12):e75-5. doi: 10.1136/annrheumdis-2016-210504

56. Seo J, Kang J-A, Suh DI, et al. Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J Allergy Clin Immunol. 2017;139(4):139-9.e12. doi: 10.1016/j.jaci.2016.10.030

57. Volpi S, Insalaco A, Caorsi R, et al. Efficacy and adverse events during Janus kinase inhibitor treatment of SAVI syndrome. J Clin Immunol. 2019;39(5):476-85. doi: 10.1007/s10875-019-00645-0

58. Yamamoto M, Yokoyama Y, Shimizu Y, et al. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod Rheumatol 2016;26(4):633-4. doi: 10.3109/14397595.2015.1069473

59. You H, Zhang G, Wang Q, et al. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: the experience from a single centre. Ann Rheum Dis. 2019 Apr 20. doi: 10.1136/annrheumdis-2019-215455

60. Hasni S, Gupta S, Davis M, et al. A phase 1b/2a trial of Tofacitinib, an oral Janus kinase inhibitor, in systemic lupus erythematosus [abstract]. Arthritis Rheum. 2019;71 Suppl 10. Available at: https://acrabstracts.org/abstract/a-phase-1b-2atrial-of-tofacitinib-an-oral-janus-kinase-inhibitor-in-systemiclupus-erythematosus/

61. Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-31. doi: 10.1016/S0140-6736(18)31363-1

62. Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. doi: 10.1172/JCI98814

63. Meesilpavikkai K, Dik WA, Schrijver B, et al. Efficacy of Baricitinib in the treatment of chilblains associated with Aicardi-Goutieres syndrome, a type I interferonopathy. Arthritis Rheum. 2019;71(5):829-31. doi: 10.1002/art.40805

64. Zong M, Lundberg IE. Pathogenesis, classification and treatment of inflammatory myopathies. Nat Rev Rheumatol. 2011;7(5):297-306. doi: 10.1038/nrrheum.2011.39

65. Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferonalpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57:664-78. doi: 10.1002/ana.20464

66. Suarez-Calvet X, Gallardo E, Nogales-Gadea G, et al. Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis. J Pathol. 2014;233:258-68. doi: 10.1002/path.4346

67. Niewold TB, Kariuki SN, Morgan GA, et al. Elevated serum interferon-alpha activity in juvenile dermatomyositis: associations with disease activity at diagnosis and after thirty-six months of therapy. Arthritis Rheum. 2009;60:1815-24. doi: 10.1002/art.24555

68. Guttsches AK, Brady S, Krause K, et al. Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Ann Neurol. 2017;81:227-39. doi: 10.1002/ana.24847

69. Liao AP, Salajegheh M, Nazareno R, et al. Interferon beta is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis. 2011;70:831-6. doi: 10.1136/ard.2010.139949

70. Greenberg SA, Higgs BW, Morehouse C, et al. Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis. Genes Immun. 2012;13:207-13. doi: 10.1038/gene.2011.61

71. Sabbagh S, Almeida de Jesus A, Hwang S, et al. Treatment of anti-MDA5 autoantibody-positive juvenile dermatomyositis using tofacitinib. Brain. 2019;142(11):e59. doi: 10.1093/brain/awz293

72. Chen Z, Wang X, Ye S. Tofacitinib in amyopathic dermatomyositis-associated interstitial lung disease. N Engl J Med. 2019;381(3):291-3. doi: 10.1056/NEJMc1900045

73. Wendel S, Venhoff N, Frye BC, et al. Successful treatment of extensive calcifications and acute pulmonary involvement in dermatomyositis with the Janus-kinase inhibitor tofacitinib – A report of two cases. J Autoimmun. 2019;100:131-6. doi: 10.1016/j.jaut.2019.03.003

74. Kato M, Ikeda K, Kageyama T, et al. Successful treatment for refractory interstitial lung disease and pneumomediastinum with multidisciplinary therapy including tofacitinib in a patient with anti-MDA5 antibody-positive dermatomyositis. J Clin Rheumatol. 2019 Jan 4. doi: 10.1097/RHU.0000000000000984

75. Paik JJ, Christopher-Stine L. A case of refractory dermatomyositis responsive to tofacitinib. Semin Arthritis Rheum. 2017;46(4):e19. doi: 10.1016/j.semarthrit.2016.08.009

76. Kurtzman DJ, Wright NA, Lin J, et al. Tofacitinib citrate for refractory cutaneous dermatomyositis: an alternative treatment. JAMA Dermatol. 2016;152(8):944-5. doi: 10.1001/jamadermatol.2016.0866

77. Kurasawa K, Arai S, Namiki Y, et al. Tofacitinib for refractory interstitial lung diseases in anti-melanoma differentiation-associated 5 gene antibody-positive dermatomyositis. Rheumatology (Oxford). 2018;57:2114-9. doi: 10.1093/rheumatology/key188

78. Ladislau L, Suarez-Calvet X, Toquet S, et al. JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain. 2018;141:1609-21. doi: 10.1093/brain/awy105

79. Moghadam-Kia S, Charlton D, Aggarwal R, Oddis CV. Management of refractory cutaneous dermatomyositis: potential role of Janus kinase inhibition with tofacitinib. Rheumatology (Oxford). 2019;58:1011-5. doi: 10.1093/rheumatology/key366

80. Papadopoulou C, Hong Y, Omoyinmi E, et al. Janus kinase 1/2 inhibition with baricitinib in the treatment of juvenile dermatomyositis. Brain. 2019;142:e8. doi: 10.1093/brain/awz005

81. Aeschlimann FA, Fremond ML, Duffy D, et al. A child with severe juvenile dermatomyositis treated with ruxolitinib. Brain. 2018;141(11):e80. doi: 10.1093/brain/awy255

82. Paik JJ, Albayda J, Tiniakou E, et al. Study of Tofacitinib in Refractory Dermatomyositis (STIR): An open label pilot study in refractory dermatomyositis [abstract]. Arthritis Rheum. 2018;70 Suppl 10. Available at: https://acrabstracts.org/abstract/study-oftofacitinib-in-refractory-dermatomyositis-stir-an-open-labelpilot-study-in-refractory-dermatomyositis/

83. Sontheimer RD. MDA5 autoantibody – another indicator of clinical diversity in dermatomyositis. Ann Trans Med. 2017;5(7). doi: 10.21037/atm.2017.03.94

84. Mariette X, Criswell LA. Primary Sjö gren's syndrome. N Engl J Med. 2018;378(10):931-9. doi: 10.1056/NEJMcp1702514

85. Imgenberg-Kreuz J, Rasmussen A, Sivils K, Nordmark G. Genetics and epigenetics in primary Sjö gren's syndrome. Rheumatology (Oxford). 2019 Feb 15. pii: key330. doi: 10.1093/rheumatology/key330

86. Bodewes ILA, Versnel MA. Interferon activation in primary Sjö gren's syndrome: recent insights and future perspective as novel treatment target. Expert Rev Clin Immunol. 2018;14(10):817-29. doi: 10.1080/1744666X.2018.1519396

87. James JA, Guthridge JM, Chen H, et al. Unique Sjö gren's syndrome patient subsets defined by molecular features. Rheumatology (Oxford). 2019 Sep 8. pii: kez335. doi: 10.1093/rheumatology/kez335

88. Lee J, Lee J, Kwok SK, et al. JAK-1 Inhibition suppresses interferon-induced BAFF production in human salivary gland: potential therapeutic strategy for primary Sjö gren's syndrome. Arthritis Rheum. 2018;70(12):2057-66. doi: 10.1002/art.40589

89. Stevenson W, Sadrai Z, Hua J, et al. Effects of topical Janus kinase inhibition on ocular surface inflammation and immunity. Cornea. 2014;33(2):177-83. doi: 10.1097/ICO.0000000000000019

90. Denton CO, Khanna D. Systemic sclerosis. Lancet. 2017;390:1658-99. doi: 10.1016/S0140-6736(17)30933-9

91. Furue M, Mitoma C, Mitoma H, et al. Pathogenesis of systemic sclerosis – current concept and emerging treatments. Immunol Res. 2017;65:790-7. doi: 10.1007/s12026-017-8926-y

92. Barrat FJ, Lu TT. Role of type I interferons and innate immunity in systemic sclerosis: unbalanced activities on distinct cell types? Curr Opin Rheumatol. 2019;31(6):569-75. doi: 10.1097/BOR.0000000000000659

93. Skaug B, Assassi S. Type I interferon dysregulation in systemic sclerosis. Cytokine. 2019 Jan 23:154635. doi: 10.1016/j.cyto.2018.12.018

94. Solans R, Bosch JA, Esteban I, et al. Systemic sclerosis developing in association with the use of interferon alpha therapy for chronic viral hepatitis. Clin Exp Rheumatol. 2004;22:625-8.

95. Black CM, Silman AJ, Herrick AI, et al. Interferon-α does not improve outcome at one year in patients with diffuse cutaneous scleroderma: results of a randomized, double-blind, placebocontrolled trial. Arthritis Rheum. 1999;42:299-305. doi: 10.1002/1529-0131(199902)42:2<299::AIDANR12>3.0.CO;2-R

96. Chakraborty D, Sumova B, Mallano T, et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun. 2017 Oct 24;8(1):1130. doi: 10.1038/s41467-017-01236-6

97. Wu M, Skaug B, Bi X, et al. Interferon regulatory factor 7 (IRF7) represents a link between inflammation and fibrosis in the pathogenesis of systemic sclerosis. Ann Rheum Dis. 2019;78(11):1583-91. doi: 10.1136/annrheumdis-2019-215208

98. Ананьева ЛП. Перспективы применения тоцилизумаба при системной склеродермии. Научно-практическая ревматология. 2015;53(6):632-40. doi: 10.14412/1995-4484-2015-632-640

99. Deverapalli SC, Rosmarin D. The use of JAK inhibitors in the treatment of progressive systemic sclerosis. J Eur Acad Dermatol Venereol. 2018;32(8):e328. doi: 10.1111/jdv.14876

100. Komai T, Shoda H, Hanata N, Fujio K. Tofacitinib rapidly ameliorated polyarthropathy in a patient with systemic sclerosis. Scand J Rheumatol. 2018;47(6):505-6. doi: 10.1080/03009742.2017.1387673

101. Samson M, Corbera-Bellalta M, Audia S, et al. Recent advances in our understanding of giant cell arteritis pathogenesis. Autoimmun Rev. 2017;16(8):833-44. doi: 10.1016/j.autrev.2017.05.014

102. Zhang H, Watanabe R, Berry GJ, et al. Inhibition of JAK-STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis. Circulation. 2018;137(18):1934-48. doi: 10.1161/CIRCULATIONAHA.117.030423

103. Tong B, Liu X, Xiao J, Su G. Immunopathogenesis of Behcet's Disease. Front Immunol. 2019;10:665. doi: 10.3389/fimmu.2019.00665

104. Yazici H, Seyahi E, Hatemi G, Yazici Y. Behcet syndrome: a contemporary view. Nat Rev Rheumatol. 2018;14(2):107-19. doi: 10.1038/nrrheum.2017.208

105. Ding Y, Li C, Liu J, et al. Tocilizumab in the treatment of severe and/or refractory vasculo-Behcet's disease: A single-centre experience in China. Rheumatology (Oxford). 2018;57(11):2057-9. doi: 10.1093/rheumatology/key230

106. Atienza-Mateo B, Calvo-Rio V, Beltran E, et al. Anti-interleukin 6 receptor tocilizumab in refractory uveitis associated with Behcet's disease: multicentre retrospective study. Rheumatology (Oxford). 2018;57(5):856-64. doi: 10.1093/rheumatology/kex480

107. Mirouse A, Barete S, Monfort JB, et al. Ustekinumab for Behcet's disease. J Autoimmun. 2017;82:41-6. doi: 10.1016/j.jaut.2017.05.002

108. Rimar D, Alpert A, Starosvetsky E, et al. Tofacitinib for polyarteritis nodosa: a tailored therapy. Ann Rheum Dis. 2016;75(12):2214-6. doi: 10.1136/annrheumdis-2016-209330

109. Wang A, Singh K, Ibrahim W, et al. The Promise of JAK Inhibitors for Treatment of Sarcoidosis and Other Inflammatory Disorders with Macrophage Activation: A Review of the Literature.Yale J Biol Med. 2020 Mar 27;93(1):187-95.

110. Karadeniz H, Gü ler AA, Atas N, et al. Tofacitinib for the treatment for colchicine- resistant familial Mediterranean fever: casebased review. Rheumatol Int. 2020;40(1):169-73. doi: 10.1007/s00296-019-04490-7

111. Montilla AM, Gö mez-Garcia F, Gö mez-Arias PJ, et al. Scoping Review on the Use of Drugs Targeting JAK/STAT Pathway in Atopic Dermatitis, Vitiligo, and Alopecia Areata. Dermatol Ther (Heidelb). 2019;9(4):655-83. doi: 10.1007/s13555-019-00329-y

112. Salas A, Hernandez-Rocha C, Duijvestein M, et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020 Mar 19. doi: 10.1038/s41575-020-0273-0

113. Насонов ЕЛ, Абдулганиева ДИ, Файрушина ИФ. Место тофацитиниба в лечении воспалительных заболеваний кишечника. Терапевтический архив. 2019;91(2):24-31. doi: 10.26442/004036600.201901.000155


Для цитирования:


Насонов Е.Л., Авдеева А.С., Лила А.М. Эффективность и безопасность тофацитиниба при иммуновоспалительных ревматических заболеваниях (часть II). Научно-практическая ревматология. 2020;58(2):214-224. https://doi.org/10.14412/1995-4484-2020-214-224

For citation:


Nasonov E.L., Avdeeva A.S., Lila A.M. EFFICACY AND SAFETY OF TOFACITINIB FOR IMMUNEMEDIATED INFLAMMATORY RHEUMATIC DISEASES (PART II). Rheumatology Science and Practice. 2020;58(2):214-224. (In Russ.) https://doi.org/10.14412/1995-4484-2020-214-224

Просмотров: 115


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)