Preview

Научно-практическая ревматология

Расширенный поиск

Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога

https://doi.org/10.14412/1995-4484-2020-123-132

Аннотация

В декабре 2019 г. в г. Ухань (провинция Хубэй, расположенная в центральном регионе Китая) зарегистрирована вспышка новой инфекции, получившей рабочее название 2019-nCoV, которая быстро распространилась практически по всей территории земного шара и приняла характер пандемии. Всемирная организация здравоохранения (ВОЗ) предложила новое название этого заболевания – коронавирусная болезнь (coronavirus disease, COVID-19), а Международный комитет по таксономии вирусов переименовал 2019-nCov в SARS-Cov-2 (severe acute respiratory syndrome Coronavirus-2). Развитие пандемии COVID-19 не только имеет огромное социальное значение, но и привлекает внимание медицинской общественности к принципиально новым клиническим и фундаментальным проблемам иммунопатологии заболеваний человека, которые еще предстоит сформулировать. Уникальный опыт, накопленный в ревматологии в процессе изучения патогенетических механизмов и фармакотерапии иммуновоспалительных ревматических заболеваний (ИВРЗ), может иметь немаловажное значение для расшифровки природы патологических процессов, лежащих в основе тяжелых, потенциально смертельных осложнений COVID-19, и, возможно, будет способствовать совершенствованию их терапии. Что касается перспектив пациентов с ИВРЗ, то, хотя развитие COVID-19 при них, к счастью, еще не описано, можно полагать, что инфицирование SARS-CoV-2 (как и другими вирусами) способно вызывать обострение патологического процесса, а тяжелая патология иммунной системы и сопутствующие коморбидные заболевания – утяжелять течение инфекции. Поскольку, согласно современным представлениям, именно «гипериммунный» ответ, а не только действие самого вируса лежит в основе поражения легких и летальности при COVID-19, особое внимание привлекают эффекты «противоревматической» терапии, включающей глюкокортикоиды, базисные противовоспалительные  препараты (БПВП), генно-инженерные биологические препараты и «таргетные» БПВП, которые могут оказывать разнонаправленное влияние на течение COVID-19. Имеются значительные теоретические предпосылки для «репозиционирования» (drug repurposing) некоторых широко применяемых в ревматологии лекарственных препаратов для лечения COVID-19 и его осложнений. Рассматриваются перспективы изучения иммунопатологии COVID-19 и теоретические обоснования применения аминохинолиновых препаратов, моноклональных антител к ИЛ6, а также ингибиторов Янус-киназ для профилактики оcложнений и лечения COVID-19.

Об авторе

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

115522, Москва, Каширское шоссе, 34А

2119991, Москва, ул. Трубецкая, 8, стр. 2



Список литературы

1. Richman DD, Whitley RJ, Hayden FG. Clinical Virology. 4th ed. Washington: ASM Press; 2016.

2. Chan-Yeung M, Xu RH. SARS: epidemiology. Respirology. 2003;8:S9-14. doi: 10.1046/j.1440-1843.2003.00518.x

3. Middle East Respiratory Syndrome Coronavirus. Available at: https://www.who.int/emergencies/mers-cov/en/ (accessed 16.02.2020).

4. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020 Jan 16. doi: 10.1002/jmv.25678

5. WHO Coronavirus disease 2019 (COVID-19) situation report – 52. Available at: https://www.who.int/docs/default-source/coronaviruse/20200312-sitrep-52-covid-19.pdf?sfvrsn=e2bfc9c0_2

6. Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924

7. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8

8. WHO. Coronavirus disease (COVID-2019) situation reports. 2020. Available at: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situation-reports (accessed 05.03.2020).

9. Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronaviruses: the species and its virus – a statement of the Coronavirus Study Group. bioRvxiv. 2020 Feb 11. doi: 10.1101/2020.02.07.937862

10. Smatti MK, Cyprian FS, Nasrallah GK, et al. Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses. 2019;11(8). pii: E762. doi: 10.3390/v11080762

11. Joo YB, Lim YH, Kim KJ, et al. Respiratory viral infections and the risk of rheumatoid arthritis. Arthritis Res Ther. 2019;21(1):199. doi: 10.1186/s13075-019-1977-9

12. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32. doi: 10.1002/jmv.25685

13. Kingsmore KM, Grammer AC, Lipsky PE. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat Rev Rheumatol. 2020;16(1):32-52. doi: 10.1038/s41584-019-0337-0

14. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. doi: 10.1016/S0140-6736(20)30183-5

15. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 (pub. online 2020 March 3). doi: 10.1007/s00134-020-05991-x

16. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):P507-13. doi: 10.1016/S0140-6736(20)30211-7

17. Lei C, Huigo L, Wei L, et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Chin J Tuberc Respir Dis. 2020 Feb;43:E005.

18. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Feb 7. doi: 10.1001/jama.2020.1585

19. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020 Feb 24. doi: 10.1016/S1473-3099(20)30086-4

20. Adhikari SP, Meng S, Wu YJ, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020;9(1):29. doi: 10.1186/s40249-020-00646-x

21. He F, Deng Y, Li W. Coronavirus Disease 2019 (COVID-19): What we know? J Med Virol. 2020 Mar 14. doi: 10.1002/jmv.25766

22. Li LQ, Huang T, Wang YQ, et al. 2019 novel coronavirus patients' clinical characteristics, discharge rate and fatality rate of metaanalysis. J Med Virol. 2020 Mar 12. doi: 10.1002/jmv.25757

23. Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020 Mar 3:102434. doi: 10.1016/j.jaut.2020.102434

24. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, et al.; Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19). Electronic address: https://www.lancovid.org. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020 Mar 13:101623. doi: 10.1016/j.tmaid.2020.101623

25. Xu Z, Shi L, Wang Y, et al. Pathological finding of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020. (Pub. Feb 18, 2020). doi: 10.1016/S2213-2600(20)30076-X

26. Tian S, Hu W, Niu L, et al. Pulmonary pathology of erarly phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020. doi: 10.20944/preprints202002.0220.v2

27. Fung SY, Yuen KS, Ye ZW, et al. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020 Mar 14;9(1):558-70. doi: 10.1080/22221751.2020.1736644

28. Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18. doi: 10.1038/s41572-019-0069-0

29. Clerkin KJ, Fried JA, Raikhelkar J, et al. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease. Circulation. 2020 Mar 21. doi: 10.1161/CIRCULATIONAHA.120.046941

30. Yang J, Sheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systemic reviews and meta-analysis. Int J Infect Dis. 2020. doi: 10.1016/J.ijid.2020.03.017

31. Гордеев АВ, Галушко ЕА, Насонов ЕЛ. Концепция мультиморбидности в ревматологической практике. Научно-практическая ревматология. 2014;52(4):362-5. doi: 10.14412/1995-4484-2014-362-365

32. Ferguson LD, Siebert S, McInnes IB, Sattar N. Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat Rev Rheumatol. 2019;15(8):461-74. doi: 10.1038/s41584-019-0256-0

33. Arrossi AV. Pulmonary Pathology in Rheumatic Disease. Clin Chest Med. 2019;40(3):667-77. doi: 10.1016/j.ccm.2019.05.011

34. Antin-Ozerkis D, Hinchcliff M. Connective tissue disease-associated interstitial lung disease: evaluation and management. Clin Chest Med. 2019;40(3):617-36. doi: 10.1016/j.ccm.2019.05.008

35. Панафидина ТА, Кондратьева ЛВ, Герасимова ЕВ и др. Коморбидность при ревматоидном артрите. Научно-практическая ревматология. 2014;52(3):283-9. doi: 10.14412/1995-4484-2014-283-289

36. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus [2019-nCoV] infected pneumonia. Mil Med Res. 2020;7:4. doi: 10.1186/s40779-020-0233-6

37. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020. doi: org/10.1515/ccim-2020-0198

38. Lippi G. Sepsis biomarkers: past present and future. Clin Chem Lab Med. 2019;57:1281-3. doi: 10.1515/cclm-2018-1347

39. Белов БС, Тарасова ГМ, Муравьева НВ. Роль биомаркеров в диагностике бактериальных инфекций при ревматических заболеваниях. Научно-практическая ревматология. 2019;57(3):333-8. doi: 10.14412/1995-4484-2019-333-338

40. Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020 Mar 16. doi: 10.1515/cclm-2020-0188

41. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020 Feb 19. doi: 10.1111/jth.14768

42. Lippi G, Plebani M, Michael Henry B. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020 Mar 13. doi: 10.1016/j.cca.2020.03.022

43. Li T. Diagnosis and clinical management of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0). Emerg Microbes Infect. 2020 Mar 14;9(1):582-5. doi: 10.1080/22221751.2020.1735265

44. Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections – the state of the art. Emerg Microbes Infect. 2020 Mar 20:1-26. doi: 10.1080/22221751.2020.1745095

45. Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2020 Mar 16. doi: 10.1515/cclm-2020-0285

46. Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020. doi: 10.1148/radio.2020200230

47. Huang O, Liu T, Huang L, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology. 2020. doi: 10.1148/radiol.2020200330

48. Xie X, Zghong Z, Zhao M, et al. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology. 2020. doi: 10.1148/radiol.2020200343

49. Tao Ai, Zhenlu Yang, Hongyan Hou, et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020;200642. doi: 10.1148/radiol.2020200642

50. Bai HX, Hsieh B, Xiong Z, et al. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology 2020 Mar 10:200823. doi: 10.1148/radiol.2020200823

51. Yan Li, Liming Xia Coronavirus disease 2019 (COVID-19): Role of Chest CT in diagnosis and management. Am J Roentgen: 1-7. doi: 10.2214/AJR.20.22954

52. Han R, Huang L, Jiang H, et al. Early clinical and CT manifestations of coronavirus disease 2019 (COVID-19) pneumonia. AJR Am J Roentgenol. 2020 Mar 17:1-6. doi: 10.2214/AJR.20.22961

53. Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related coronavirus diseases. ACS Cent Sci. 2020. doi: 10.1021/acscentsci.0c00272

54. Dhama K, Sharun K, Tiwari R, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother. 2020 Mar 18:1-7. doi: 10.1080/21645515.2020.1735227

55. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-39. doi: 10.1007/s00281-017-0629-x

56. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. doi: 10.1038/s41584-020-0372-x

57. Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-61. doi: 10.14412/1995-4484-2019-452-461

58. Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infection in the 21st century. Int J Antimicrob Agents. 2007;30:297-308.

59. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020 Mar 11:105938. doi: 10.1016/j.ijantimicag.2020.105938

60. Boelaert JR, Piette J, Sperber K. The potential place of chloroquine in the treatment of HIV-1-infected patients. J Clin Virol. 2001;20:137-40. doi: 10.1016/S1386-6532(00)00140-2

61. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269-71. doi: 10.1038/s41422-020-0282-0

62. Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020 Feb. doi: 10.5582/bst.2020.01047

63. Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 2020 Mar 20. doi: 10.1093/jac/dkaa114

64. Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. doi: 10.1038/s41421-020-0156-0. eCollection 2020.

65. Cortegiani A, Ingoglia G, Ippolito M, et al. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020 Mar 10. doi: 10.1016/j.jcrc.2020.03.005

66. Russell CD, Millar JE, Baillie JK. Clinical evidence does not suppot corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473-5. doi: 10.1016/S0140-6736(20)30317-2

67. Ni Y-N, Chen G, Sun J, et al. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care. 2019;23:99. doi: 10.1186/s13054-019-2395-8

68. Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-allrounders tackling the versatile players of the immune system. Front Immunol. 2019 Jul 24;10:1744. doi: 10.3389/fimmu.2019.01744. eCollection 2019.

69. Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic disease. Nat Rev Rheumatol. 2020. doi: 10.1038/s415840020-0371-y

70. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017. doi: 10.1038/nri2017.1

71. Oray M, Abu Samra K, Ebrahimiadib N, et al. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457-65. doi: 10.1517/14740338.2016.1140743

72. Heming N, Sivanandamoorthy S, Meng P, et al. Immune effects of corticosteroids in sepsis. Front Immunol. 2018;9:1736. doi: 10.3389/fimmu.2018.01736

73. Rygard SL, Butler E, Granholm A, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018 Jul;44(7):1003-16. doi: 10.1007/s00134-018-5197-6

74. Meduri GU, Bridges L, Shih MC, et al. Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: analysis of individual patients' data from four randomized trials and triallevel meta-analysis of the updated literature. Intensive Care Med. 2016;42(5):829-40. doi: 10.1007/s00134-015-4095-4

75. Chan ED, Chan MM, Chan MM, Marik PE. Use of glucocorticoids in the critical care setting: Science and clinical evidence. Pharmacol Ther. 2020;206:107428. doi: 10.1016/j.pharmthera.2019.107428

76. Arabi YM, Mandouran Y, Al-Hameed F, et al. Glucocosteroid therapy for critically ill parients with middle east respiratory syndrome. Am J Resp Crit Care Med. 2018;197L757-767. doi: 10.1164/rccm.201706-1172OC

77. Peiris JSM, Chu CM, Cheng VCC, et al. Clinical progression and viral load in a community outbreak or coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767-72. doi: 10.1016/S0140-6736(03)13412-5

78. Zhou Y-H, Qin Y-Y, Lu Y-Q, et al. Effectiveness of glucocorticoid therapy in patients with severe novel coronavirus pneumonia: protocol of a randomized controlled trial. Chin Med J. 2020. doi: 10.1097/CM9/ 0000000000000791

79. WHO. Clinical management of severe acute respiratory infection when novel coronavirus [nCoV] infection is suspected. Available at: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novelcoronavirus-[ncov]-infection-is-suspected (accessed 09.02.2020).

80. Behrens EM, Koretzky GA. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017;69(6):1135-43. doi: 10.1002/art.40071

81. Gupta KK, Khan MA, Singh SK. Constitutive inflammatory cytokine storm: a major threat to human health. J Interferon Cytokine Res. 2020;40(1):19-23. doi: 10.1089/jir.2019.0085

82. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet. 2014;383:1503-16. doi: 10.1016/S0140-6736(13)61048-X

83. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The Immunology of Macrophage Activation Syndrome. Front Immunol. 2019 Feb 1;10:119. doi: 10.3389/fimmu.2019.00119

84. Karakike E, Giamarellos-Bourboulis EJ. Macrophage activationlike syndrome: a distinct entity leading to early death in sepsis. Front Immunol. 2019 Jan 31;10:55. doi: 10.3389/fimmu.2019.00055

85. Shimabukuro-Vornhagen A, Gö del P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9

86. Wu D, Yang XO. Th17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor fedratinib. J Microb Immun Infect. 2020. doi: 1016/j.jmii.2020.03.005

87. Faure E, Poissy J, Goffard C, et al. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside. PLoS One. 2014;9:e88776. doi: 10.1371/journal.pone.0088716

88. Josset L, Menachery VD, Graliski LE, et al. Cell host response to infection with novel human coronavirus EMC predict potential antiviral and important differences with SARS coronavirus. mBio. 2013;4:e00165-00113. doi: 10.1128/mBio.00165-13

89. Bermejo-Martin JE, Ortiz de Lejarazu R, Pumarola T, et al. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care. 2009;13:R201. doi: 10.1186/cc8208

90. Zhou Y, Fu B, Zheng X, et al. Abberant pathogenic GM-CSF+T cells and inflammatory CD14+CD16+ monocyte in severe pulmonary syndrome patients of a new coronavirus. bioRxiv. 2020. doi: 10.1101/2020.02.12.945576

91. Liu T, Zhang J, Yang Y, et al. The potential role of interleukin 6 in monitoring severe case of coronavirus disesase. MedRxiv. 2020. doi: 10.1101/2020/03/01/20029769

92. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020 Mar 17. doi: 10.1002/jmv.25770

93. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase iii trial. Crit Care Med. 2016;44:275-81. doi: 10.1097/CCM.0000000000001402

94. Eloseily EM, Weiser P, Crayne CB, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2020 Feb;72(2):326-34. doi: 10.1002/art.41103

95. Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-9. doi: 10.14412/1995-4484-2017-590-599

96. Koch C, Barrett D, Teachey T. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Exp Rev Clin Immunol. 2019;15:813-22. doi: 10.1080/1744666X.2019.1629904

97. Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2019;24(6):739-48. doi: 10.1038/s41591-018-0036-4

98. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507-17. doi: 10.1056/NEJMoa1407222

99. Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cellinduced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731-8. doi: 10.1038/s41591-018-0041-7

100. Xu X, Han M, Sun W, et al. Effective treatment of Severe COVID-19 patients with tocilizumab. ChinaXiv (internet) 2020 Mar 5. Available at: https://ser.es/wpcontent/uploads/2020/03/TCZ-and-COVID-19.pdf

101. Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698-701. doi: 10.1016/j.jaci.2016.10.022

102. Lounder DT, Bin Q, de Min C, Jordan MB. Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv. 2019 Jan 8;3(1):47-50. doi: 10.1182/bloodadvances.2018025858

103. Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16.

104. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201

105. Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Bio Rxiv. 2020 (pub. online Jan 26). doi: 10.1101/2020.01.26.919985

106. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 (pub. online Jan 30). doi: 10.1016/S0140-6736(20)30251-8

107. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020 Feb 15;395(10223):e30-e31. doi: 10.1016/S0140-6736(20)30304-4

108. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 Feb 27. doi: 10.1016/S1473-3099(20)30132-8

109. Ahmed A, Merrill SA, Alsawah F, et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 20192019;6(12):e630-e637. doi: 10.1016/S2352-3026(19)30156-5

110. Henter JI, Horne A, Arico M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007 Feb;48(2):124-31. doi: 10.1002/pbc.21039

111. Fardet L, Galicier L, Lambotte O, et al. Development and validation of the HScore for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheum. 2014;66(9):2613-20. doi: 10.1002/art.38690


Рецензия

Для цитирования:


Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-132. https://doi.org/10.14412/1995-4484-2020-123-132

For citation:


Nasonov E.L. CORONAVIRUS DISEASE 2019 (COVID-19): A RHEUMATOLOGIST’S THOUGHTS. Rheumatology Science and Practice. 2020;58(2):123-132. https://doi.org/10.14412/1995-4484-2020-123-132

Просмотров: 4139


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)